We put the Google Pixel 7a through our rigorous DXOMARK Display test suite to measure its performance across six criteria. In this test results summary, we break down how it fared in a variety of tests and in several common use cases.
Overview
Key display specifications:
- 6.1 inches OLED FHD+, (~82.9% screen-to-body ratio)
- Dimensions: 155 mm x 72.9 mm x 9 mm
- Resolution:1080 x 2400 (429 ppi)
- Aspect ratio:20:9
- Refresh rate: 90Hz
Scoring
Sub-scores and attributes included in the calculations of the global score.
Google Pixel 7a
135
display
123
Samsung Galaxy S24 Ultra
Best: Samsung Galaxy S24 Ultra (164)
139
Google Pixel 8
Best: Google Pixel 8 (165)
141
Samsung Galaxy S25 Ultra
Best: Samsung Galaxy S25 Ultra (167)
148
Google Pixel 7 Pro
Best: Google Pixel 7 Pro (164)
Position in Global Ranking

75
th
1. Samsung Galaxy S25 Ultra
160
8. Samsung Galaxy S24 Ultra
155
10. Samsung Galaxy Z Fold6
154
10. Samsung Galaxy S24+ (Exynos)
154
10. Samsung Galaxy S24 (Exynos)
154
17. Google Pixel 9 Pro Fold
152
18. Apple iPhone 15 Pro Max
151
23. Apple iPhone 16 Pro Max
150
23. Samsung Galaxy Z Flip6
150
30. Samsung Galaxy S23 Ultra
148
36. Samsung Galaxy A55 5G
147
39. Apple iPhone 14 Pro Max
146
41. Samsung Galaxy S24 FE
145
45. Samsung Galaxy Z Flip5
144
47. Asus Zenfone 11 Ultra
143
47. Samsung Galaxy A35 5G
143
52. Apple iPhone 13 Pro Max
142
52. Samsung Galaxy Z Fold5
142
58. Samsung Galaxy S23 FE
140
63. Xiaomi Redmi Note 14 Pro+ 5G
139
64. Honor Magic4 Ultimate
138
75. Samsung Galaxy S22 Ultra (Snapdragon)
135
75. Xiaomi Redmi Note 13 Pro Plus 5G
135
80. Samsung Galaxy S22+ (Exynos)
134
83. Samsung Galaxy Z Flip4
133
83. Samsung Galaxy S22 Ultra (Exynos)
133
83. Samsung Galaxy S22 (Snapdragon)
133
83. Vivo X80 Pro (MediaTek)
133
88. Samsung Galaxy S22 (Exynos)
132
93. Samsung Galaxy S21 Ultra 5G (Exynos)
131
93. Vivo X80 Pro (Snapdragon)
131
97. Samsung Galaxy Z Fold4
130
97. Samsung Galaxy S21 Ultra 5G (Snapdragon)
130
97. Samsung Galaxy S21 FE 5G (Snapdragon)
130
108. Samsung Galaxy A54 5G
129
112. Apple iPhone 12 Pro Max
127
116. Vivo X60 Pro 5G (Snapdragon)
126
133. Motorola Edge 30 Pro
123
137. Apple iPhone 11 Pro Max
122
137. Motorola Edge 40 Pro
122
141. Apple iPhone SE (2022)
120
147. Samsung Galaxy A52 5G
114
149. Motorola Razr 40 Ultra
113
152. Crosscall Stellar-X5
109
153. Samsung Galaxy A53 5G
108
157. Crosscall Stellar-M6
101
160. Samsung Galaxy A22 5G
82
Position in High-End Ranking

12
th
9. Xiaomi Redmi Note 14 Pro+ 5G
139
12. Xiaomi Redmi Note 13 Pro Plus 5G
135
16. Samsung Galaxy A54 5G
129
22. Apple iPhone SE (2022)
120
25. Samsung Galaxy A52 5G
114
29. Samsung Galaxy A53 5G
108
Pros
- Good color rendering in all use-case lighting conditions
- Smooth when playing video games and when scrolling on the web
- Good management of video frame drops
Cons
- Lacks brightness when looking at pictures in outdoor conditions
- Lacks details in the darker shades when watching HDR10 videos
- At an angle, the device presents rainbow artifacts
The Google Pixel 7a is a good device for indoor use, providing proper readability along with very good color rendering and smoothness. Gamers will enjoy a good experience because of the new smartphone’s smooth, accurate and reactive display, as well as its fine control of aliasing.
Although it achieves the same overall display score as the older Google Pixel 7, it arrives there in a different way. While it has significantly better results for color, and noticeable improvements in motion and touch, the Pixel 7a lags behind the Pixel 7 in readability, video, and management of artifacts. Outdoor viewing using default settings is hampered by the 7a’s lack of brightness in outdoor lighting conditions.
Test summary
About DXOMARK Display tests: For scoring and analysis in our smartphone and other display reviews, DXOMARK engineers perform a variety of objective and perceptual tests under controlled lab and real-life conditions. Note that we evaluate display attributes using only the device’s built-in display hardware and its still image (gallery) and video apps at their default settings. (For in-depth information about how we evaluate smartphone and other displays, check out our articles, “How DXOMARK tests display quality” and “A closer look at DXOMARK Display testing.”
The following section gathers key elements of our exhaustive tests and analyses performed in DXOMARK laboratories. Detailed performance evaluations under the form of reports are available upon request. Do not hesitate to contact us.
Readability
123
Samsung Galaxy S24 Ultra
Samsung Galaxy S24 Ultra
How Display Readability score is composed
Readability evaluates how easily and comfortably users can read still content (photos & web) on the display under different real-life conditions. DXOMARK uses its Display Bench to recreate ambient light conditions ranging from total darkness to bright sunlight. In addition to laboratory tests, perceptual analysis is also made in real-life environments.
Luminance under various lighting conditions
Contrast under various lighting conditions
Readability in an indoor (1000 lux) environment
From left: Google Pixel 7a, Google Pixel 6a, Honor 70, Samsung Galaxy A54 5G
(Photos for illustration only)
Readability in a sunlight (>90 000 lux) environment
From left: Google Pixel 7a, Google Pixel 6a, Honor 70, Samsung Galaxy A54 5G
(Photos for illustration only)
Luminance uniformity measurement
This graph shows the uniformity of the display with a 20% gray pattern. The more visible the green color, the more uniform the display.
Color
139
Google Pixel 8
Google Pixel 8
How Display Color score is composed
The color attribute evaluates the capacity of the device to accurately reproduce colors. The measurements taken are for fidelity, white point color, and gamut coverage. We perform color evaluations for different lighting conditions to see how well the device can manage color in the surrounding environment. Colors are measured using a spectrophotometer in a controlled lighting environment. Perceptual analysis of color rendering is against the reference pattern displayed on a calibrated professional monitor.
White point under D65 illuminant at 1000 lux
Color rendering indoors (1000 lux)
Clockwise from top left: Google Pixel 7a, Google Pixel 6a, Honor 70, Samsung Galaxy A54 5G
(Photos for illustration only)
Color rendering in sunlight (>90 000 lux)
Clockwise from top left: Google Pixel 7a, Google Pixel 6a, Honor 70, Samsung Galaxy A54 5G
(Photos for illustration only)
Color fidelity measurements
Google Pixel 7a, color fidelity at 1000 lux in the sRGB color space
Google Pixel 7a, color fidelity at 1000 lux in the Display-P3 color space
Each arrow represents the color difference between a target color pattern (base of the arrow) and its actual measurement (tip of the arrow). The longer the arrow, the more visible the color difference is. If the arrow stays within the circle, the color difference will be visible only to trained eyes.
Color behavior on angle
This graph shows the color shift when the screen is at an angle. Each dot represents a measurement at a particular angle. Dots inside the inner circle exhibit no color shift in angle; those between the inner and outer circle have shifts that only trained experts will see; but those falling outside the outer circle are noticeable.
Video
141
Samsung Galaxy S25 Ultra
Samsung Galaxy S25 Ultra
How Display Video score is composed
Our video attribute evaluates the Standard Dynamic Range (SDR) and High Dynamic Range (HDR10) video handling of each device in indoor and low-light conditions. We measure tone mapping, color gamut, brightness and contrast of the display. We perform perceptual analysis against our professional reference monitor (Sony BVM-HX310) to ensure that the rendering respects the artistic intent.
Video brightness at 10% APL in the dark ( < 5 lux)
Video rendering in a low-light (0 lux) environment
Clockwise from top left: Google Pixel 7a, Google Pixel 6a, Honor 70, Samsung Galaxy A54 5G
(Photos for illustration only)
Gamut coverage for video content
The primary colors are measured both in HDR10 and SDR. The extracted color gamut shows the extent of the color area that the device can render. To respect the artistic intent, the measured gamut should match the master color space of each video.
How Display Motion score is composed
The motion attribute evaluates the handling of dynamic contents. Frame drops, motion blur, and playback artifacts are scrutinized using games and videos.
Video frame drops
These long exposure photos present the number of frame irregularities in a 30-second video. A good performance shows a regular pattern (either a flat gray image or a pull-down pattern).
Touch
148
Google Pixel 7 Pro
Google Pixel 7 Pro
How Display Touch score is composed
To evaluate touch, DXOMARK uses a touch robot and a high-speed camera to play and record a set of scenarios for smoothness, accuracy and response-time evaluation.
Average Touch Response Time Google Pixel 7a
This response time test precisely evaluates the time elapsed between a single touch of the robot on the screen and the displayed action. This test is applied to activities that require high reactivity, such as gaming.
How Display Artifacts score is composed
Evaluating artifacts means checking for the performance, image rendering and motion flaws that can affect the end-user experience. DXOMARK measures precisely the device’s reflectance and the presence of flicker, and assesses the impact of residual aliasing when playing video games, among other characteristics.
Average Reflectance (SCI) Google Pixel 7a
SCI stands for Specular Component Included, which measures both the diffuse reflection and the specular reflection. Reflection from a simple glass sheet is around 4%, while it reaches about 6% for a plastic sheet. Although smartphones’ first surface is made of glass, their total reflection (without coating) is usually around 5% due to multiple reflections created by the complex optical stack.
Reflectance (SCI)
Measurements above show the reflection of the device within the visible spectrum range (400 nm to 700 nm). It includes both diffuse and specular reflection.
PWM Frequency Google Pixel 7a
360 Hz
Bad
Good
Bad
Great
Pulse width modulation is a modulation technique that generates variable-width pulses to represent the amplitude of an analog input signal. This measurement is important for comfort because flickering at low frequencies can be perceived by some individuals, and in the most extreme cases, can induce seizures. Some experiments show that discomfort can appear at a higher frequency. A high PWM frequency (>1500 Hz) tends to be less disturbing for users.
Temporal Light Modulation
This graph represents the frequencies of lighting variation; the highest peak gives the main flicker frequency. The combination of a low frequency and a high peak is susceptible to inducing eye fatigue. Displays flicker for 2 main reasons: refresh rate and Pulse Width Modulation. This measurement is important for comfort because flickering at low frequencies can be perceived by some individuals, and in the most extreme cases, can induce seizures. Some experiments show that discomfort can appear at a higher frequency. A high PWM frequency (>1500 Hz) tends to be safer for users.
Aliasing (closeup)
Google Pixel 7a
(Photos for illustration only)
DXOMARK encourages its readers to share comments on the articles. To read or post comments, Disqus cookies are required. Change your Cookies Preferences and read more about our Comment Policy.