We put the Crosscall Stellar-X5 through our rigorous DXOMARK Display test suite to measure its performance across four criteria. In this test results, we will break down how it fared in a variety of tests and several common use cases.
Overview
Key display specifications
- 6.5 inches LCD IPS
- Dimensions: 172.4 x 80.1 x 11.9 mm (6.79 x 3.15 x 0.47 inches)
- Resolution: 1080 x 2400 pixels, (~405 ppi density)
- Aspect ratio: 20:9
- Refresh rate: 120 Hz
Scoring
Sub-scores and attributes included in the calculations of the global score.
Crosscall Stellar-X5
109
display
106
Samsung Galaxy S24 Ultra
Best: Samsung Galaxy S24 Ultra (164)
111
Google Pixel 8
Best: Google Pixel 8 (165)
103
Samsung Galaxy Z Fold6
Best: Samsung Galaxy Z Fold6 (165)
138
Google Pixel 7 Pro
Best: Google Pixel 7 Pro (164)
Position in Global Ranking
136
th
4. Samsung Galaxy S24 Ultra
155
5. Samsung Galaxy Z Fold6
154
5. Samsung Galaxy S24+ (Exynos)
154
5. Samsung Galaxy S24 (Exynos)
154
11. Google Pixel 9 Pro Fold
152
12. Apple iPhone 15 Pro Max
151
17. Apple iPhone 16 Pro Max
150
17. Samsung Galaxy Z Flip6
150
21. Samsung Galaxy S23 Ultra
148
26. Samsung Galaxy A55 5G
147
29. Apple iPhone 14 Pro Max
146
34. Samsung Galaxy Z Flip5
144
36. Asus Zenfone 11 Ultra
143
36. Samsung Galaxy A35 5G
143
39. Apple iPhone 13 Pro Max
142
39. Samsung Galaxy Z Fold5
142
44. Samsung Galaxy S23 FE
140
48. Honor Magic4 Ultimate
138
59. Samsung Galaxy S22 Ultra (Snapdragon)
135
59. Xiaomi Redmi Note 13 Pro Plus 5G
135
64. Samsung Galaxy S22+ (Exynos)
134
67. Samsung Galaxy Z Flip4
133
67. Samsung Galaxy S22 Ultra (Exynos)
133
67. Samsung Galaxy S22 (Snapdragon)
133
67. Vivo X80 Pro (MediaTek)
133
72. Samsung Galaxy S22 (Exynos)
132
77. Samsung Galaxy S21 Ultra 5G (Exynos)
131
77. Vivo X80 Pro (Snapdragon)
131
81. Samsung Galaxy Z Fold4
130
81. Samsung Galaxy S21 Ultra 5G (Snapdragon)
130
81. Samsung Galaxy S21 FE 5G (Snapdragon)
130
92. Samsung Galaxy A54 5G
129
96. Apple iPhone 12 Pro Max
127
100. Vivo X60 Pro 5G (Snapdragon)
126
117. Motorola Edge 30 Pro
123
121. Apple iPhone 11 Pro Max
122
121. Motorola Edge 40 Pro
122
125. Apple iPhone SE (2022)
120
131. Samsung Galaxy A52 5G
114
133. Motorola Razr 40 Ultra
113
136. Crosscall Stellar-X5
109
137. Samsung Galaxy A53 5G
108
143. Samsung Galaxy A22 5G
82
Position in Ultra-Premium Ranking
81
st
3. Samsung Galaxy S24 Ultra
155
4. Samsung Galaxy Z Fold6
154
4. Samsung Galaxy S24+ (Exynos)
154
8. Google Pixel 9 Pro Fold
152
9. Apple iPhone 15 Pro Max
151
13. Apple iPhone 16 Pro Max
150
13. Samsung Galaxy Z Flip6
150
16. Samsung Galaxy S23 Ultra
148
22. Apple iPhone 14 Pro Max
146
26. Samsung Galaxy Z Flip5
144
28. Asus Zenfone 11 Ultra
143
30. Apple iPhone 13 Pro Max
142
30. Samsung Galaxy Z Fold5
142
35. Honor Magic4 Ultimate
138
42. Samsung Galaxy S22 Ultra (Snapdragon)
135
44. Samsung Galaxy S22+ (Exynos)
134
46. Samsung Galaxy Z Flip4
133
46. Samsung Galaxy S22 Ultra (Exynos)
133
46. Vivo X80 Pro (MediaTek)
133
53. Samsung Galaxy S21 Ultra 5G (Exynos)
131
53. Vivo X80 Pro (Snapdragon)
131
57. Samsung Galaxy Z Fold4
130
57. Samsung Galaxy S21 Ultra 5G (Snapdragon)
130
65. Apple iPhone 12 Pro Max
127
78. Apple iPhone 11 Pro Max
122
80. Motorola Razr 40 Ultra
113
Pros
- No frame drops when watching video
- Accurate screen interactions, with quick reaction to touch
- No screen flicker
Cons
- Poor readability in indoor and outdoor conditions
- Minimum luminance is too high in a low-light condition
- Dark tones are not visible when watching HDR10 video
- Brightness drops quickly when viewing the screen at an angle
The Crosscall Stellar-X5’s screen provided a very uneven performance in our Display protocol, with a screen experience that was affected by a pinkish cast in all conditions.
Although the Stellar-X5’s display luminance and contrast levels were able to match most ultra-premium phones in indoor conditions, the device’s display was still difficult to read, especially in bright outdoor environments. In complete darkness, the screen’s luminance remained much too bright to offer a comfortable viewing experience.
Watching HDR10 video was also a mixed experience. Although there were no frame drops, it was sometimes hard to make out the dark tones in the video content due to the lack of brightness.
Otherwise, the Crosscall Stellar-X5’s liquid crystal display was basically free of any flicker, a phenomenon that is more likely to occur in OLED displays, which are typically found on other ultra-premium phone displays.
Although intended touch interactions on the display were often fast and accurate, the display did frequently execute unwanted touches.
Test summary
About DXOMARK Display tests: For scoring and analysis, a device undergoes a series of objective and perceptual tests in controlled lab and real-life conditions. The DXOMARK Display score takes into account the overall user experience the screen provides, considering the hardware capacity and the software tuning. In testing, only factory-installed video and photo apps are used. More in-depth details about how DXOMARK tests displays are available in the article “A closer look at DXOMARK Display testing.”
The following section focuses on the key elements of our exhaustive tests and analyses performed in DXOMARK laboratories. Full reports with detailed performance evaluations are available upon request. To order a copy, please contact us.
Readability
106
Samsung Galaxy S24 Ultra
Samsung Galaxy S24 Ultra
How Display Readability score is composed
Readability evaluates the user’s ease and comfort of viewing still content, such as photos or a web page, on the display under different lighting conditions. Our measurements run in the labs are completed by perceptual testing and analysis.
Luminance under various lighting conditions
This graph shows the screen luminance in environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Contrast under various lighting conditions
This graph shows the screen’s contrast levels in lighting environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Luminance vs Viewing Angle
This graph presents how the luminance drops as viewing angles increase.
Skin-tone rendering in an indoor (250 lux) environment
From left to right: Crosscall Stellar-X5, Fairphone 4, Poco F4 GT, Samsung Galaxy A55 5G
(Photos for illustration only)
Skin-tone rendering in a sunlight (>90 000 lux) environment
From left to right: Crosscall Stellar-X5, Fairphone 4, Poco F4 GT, Samsung Galaxy A55 5G
(Photos for illustration only)
Average Reflectance (SCI) Crosscall Stellar-X5
Crosscall Stellar-X5
Fairphone 5
Xiaomi Redmi Note 13 Pro Plus 5G
Samsung Galaxy A55 5G
SCI stands for Specular Component Included, which measures both the diffuse reflection and the specular reflection. Reflection from a simple glass sheet is around 4%, while it reaches about 6% for a plastic sheet. Although smartphones’ first surface is made of glass, their total reflection (without coating) is usually around 5% due to multiple reflections created by the complex optical stack.
Average reflectance is computed based on the spectral reflectance in the visible spectrum range (see graph below) and human spectral sensitivity.
Reflectance (SCI)
Wavelength (horizontal axis) defines light color, but also our capacity to see it; for example, UV is a very low wavelength that the human eye cannot see; Infrared is a high wavelength that the human eye also cannot see). White light is composed of all wavelengths between 400 nm and 700 nm, i.e. the range the human eye can see. Measurements above show the reflection of the devices within the visible spectrum range (400 nm to 700 nm).
Uniformity
This graph shows the distribution of luminance throughout the entire display panel. Uniformity is measured with a 20% gray pattern, with bright green indicating ideal luminance. An evenly spread-out bright green color on the screen indicates that the display’s brightness is uniform. Other colors indicate a loss of uniformity.
PWM Frequency Crosscall Stellar-X5
No flicker
Bad
Good
Bad
Great
Crosscall Stellar-X5
Fairphone 5
Xiaomi Redmi Note 13 Pro Plus 5G
Samsung Galaxy A55 5G
Displays flicker for 2 main reasons: refresh rate and Pulse Width Modulation. Pulse width modulation is a modulation technique that generates variable-width pulses to represent the amplitude of an analog input signal. This measurement is important for comfort because flickering at low frequencies can be perceived by some individuals, and in the most extreme cases, can induce seizures. Some experiments show that discomfort can appear at a higher frequency. A high PWM frequency (>1500 Hz) tends to be less disturbing for users.
Temporal Light Modulation
This graph represents the frequencies of lighting variation; the highest peak gives the most important modulation. The combination of a low frequency and a high peak is susceptible to inducing eye fatigue.
Color
111
Google Pixel 8
Google Pixel 8
How Display Color score is composed
Color evaluations are performed in different lighting conditions to see how well the device manages color with the surrounding environment. Devices are tested with sRGB and Display-P3 image patterns. Both faithful mode and default mode are used for our evaluation. Our measurements run in the labs are completed by perceptual testing & analysis.
White point color under D65 illuminant at 830 lux