We put the Honor Magic Vs through our rigorous DXOMARK Display test suite to measure its performance across six criteria. In this test results, we will break down how it fared in a variety of tests and several common use cases.
Overview
Key display specifications:
- 7.9 inches (unfolded) OLED, (~88.7% screen-to-body ratio)
- Dimensions: Unfolded: 160.3 x 141.5 x 6.1 mm; Folded: 160.3 x 72.6 x 12.9 mm
- Resolution: Unfolded: 1984 x 2272 pixels, (~382 ppi density)
- Aspect ratio: 10.3:9
- Refresh rate: 90 Hz
Scoring
Sub-scores and attributes included in the calculations of the global score.
Honor Magic Vs
136
display
160
Samsung Galaxy S24 Ultra
Best: Samsung Galaxy S24 Ultra (164)
116
Google Pixel 8
Best: Google Pixel 8 (165)
131
Samsung Galaxy Z Fold6
Best: Samsung Galaxy Z Fold6 (165)
133
Google Pixel 7 Pro
Best: Google Pixel 7 Pro (164)
Position in Global Ranking
52
nd
4. Samsung Galaxy S24 Ultra
155
5. Samsung Galaxy Z Fold6
154
5. Samsung Galaxy S24+ (Exynos)
154
5. Samsung Galaxy S24 (Exynos)
154
11. Google Pixel 9 Pro Fold
152
12. Apple iPhone 15 Pro Max
151
17. Samsung Galaxy Z Flip6
150
19. Samsung Galaxy S23 Ultra
148
23. Samsung Galaxy A55 5G
147
26. Apple iPhone 14 Pro Max
146
31. Samsung Galaxy Z Flip5
144
33. Asus Zenfone 11 Ultra
143
33. Samsung Galaxy A35 5G
143
36. Apple iPhone 13 Pro Max
142
36. Samsung Galaxy Z Fold5
142
40. Samsung Galaxy S23 FE
140
44. Honor Magic4 Ultimate
138
54. Samsung Galaxy S22 Ultra (Snapdragon)
135
54. Xiaomi Redmi Note 13 Pro Plus 5G
135
59. Samsung Galaxy S22+ (Exynos)
134
62. Samsung Galaxy Z Flip4
133
62. Samsung Galaxy S22 Ultra (Exynos)
133
62. Samsung Galaxy S22 (Snapdragon)
133
62. Vivo X80 Pro (MediaTek)
133
67. Samsung Galaxy S22 (Exynos)
132
72. Samsung Galaxy S21 Ultra 5G (Exynos)
131
72. Vivo X80 Pro (Snapdragon)
131
76. Samsung Galaxy Z Fold4
130
76. Samsung Galaxy S21 Ultra 5G (Snapdragon)
130
76. Samsung Galaxy S21 FE 5G (Snapdragon)
130
87. Samsung Galaxy A54 5G
129
91. Apple iPhone 12 Pro Max
127
95. Vivo X60 Pro 5G (Snapdragon)
126
112. Motorola Edge 30 Pro
123
116. Apple iPhone 11 Pro Max
122
116. Motorola Edge 40 Pro
122
120. Apple iPhone SE (2022)
120
126. Samsung Galaxy A52 5G
114
128. Motorola Razr 40 Ultra
113
131. Crosscall Stellar-X5
109
132. Samsung Galaxy A53 5G
108
138. Samsung Galaxy A22 5G
82
Position in Ultra-Premium Ranking
38
th
3. Samsung Galaxy S24 Ultra
155
4. Samsung Galaxy Z Fold6
154
4. Samsung Galaxy S24+ (Exynos)
154
8. Google Pixel 9 Pro Fold
152
9. Apple iPhone 15 Pro Max
151
13. Samsung Galaxy Z Flip6
150
14. Samsung Galaxy S23 Ultra
148
19. Apple iPhone 14 Pro Max
146
23. Samsung Galaxy Z Flip5
144
25. Asus Zenfone 11 Ultra
143
27. Apple iPhone 13 Pro Max
142
27. Samsung Galaxy Z Fold5
142
32. Honor Magic4 Ultimate
138
39. Samsung Galaxy S22 Ultra (Snapdragon)
135
41. Samsung Galaxy S22+ (Exynos)
134
43. Samsung Galaxy Z Flip4
133
43. Samsung Galaxy S22 Ultra (Exynos)
133
43. Vivo X80 Pro (MediaTek)
133
50. Samsung Galaxy S21 Ultra 5G (Exynos)
131
50. Vivo X80 Pro (Snapdragon)
131
54. Samsung Galaxy Z Fold4
130
54. Samsung Galaxy S21 Ultra 5G (Snapdragon)
130
62. Apple iPhone 12 Pro Max
127
75. Apple iPhone 11 Pro Max
122
77. Motorola Razr 40 Ultra
113
Pros
- Good brightness in indoor and low-light conditions
- Good color rendering in every use case
- Good flicker management
Cons
- Lacks readability and details under sunlight
- Lack of details and flat midtones when watching HDR10 videos
- Lack of smooth interactions when playing video games and browsing the web
The Honor Magic Vs display provided good brightness in indoor and low-light conditions, which makes it ideal for looking at pictures or social media. But in outdoor conditions, the device’s readability was affected by the screen’s middle crease, where reflections were intrusive compared to the competitors. The main screen’s performance was less satisfactory when gaming because of the lack of smooth interactions and because of visible aliasing of images. Additionally, the device, as many other foldable phones, was affected by the jello effect: when scrolling down a slight lag is perceptible between the right and the left sides of the display.
The display’s colors were rendered well, the device provided good color uniformity, and the angular color consistency was satisfying. Although the device lacked some brightness when watching HDR10 videos, its HDR10 tone mapping was impeccable.
The Honor Magic Vs was the first foldable with a (nearly) flicker-free display that has been tested so far by DXOMARK.
Test summary
About DXOMARK Display tests: For scoring and analysis in our smartphone and other display reviews, DXOMARK engineers perform a variety of objective and perceptual tests under controlled lab and real-life conditions. Note that we evaluate display attributes using only the device’s built-in display hardware and its still image (gallery) and video apps at their default settings. (For in-depth information about how we evaluate smartphone and other displays, check out our articles, “How DXOMARK tests display quality” and “A closer look at DXOMARK Display testing.”
The following section gathers key elements of our exhaustive tests and analyses performed in DXOMARK laboratories. Detailed performance evaluations under the form of reports are available upon request. Do not hesitate to contact us.
Readability
160
Samsung Galaxy S24 Ultra
Samsung Galaxy S24 Ultra
How Display Readability score is composed
Readability evaluates how easily and comfortably users can read still content (photos & web) on the display under different real-life conditions. DXOMARK uses its Display Bench to recreate ambient light conditions ranging from total darkness to bright sunlight. In addition to laboratory tests, perceptual analysis is also made in real-life environments.
Luminance under various lighting conditions
Contrast under various lighting conditions
Readability in a low-light (0 lux) environment
From left: Honor Magic Vs, Vivo X Fold, Samsung Galaxy Z Fold 4
(Photos for illustration only)
Readability in an indoor (1000 lux) environment
From left: Honor Magic Vs, Vivo X Fold, Samsung Galaxy Z Fold4
(Photos for illustration only)
Readability in a sunlight (>90 000 lux) environment
From left: Honor Magic Vs, Vivo X Fold, Samsung Galaxy Z Fold4
(Photos for illustration only)
Luminance uniformity measurement
This graph shows the uniformity of the display with a 20% gray pattern. The more visible the green color, the more uniform the display.
Color
116
Google Pixel 8
Google Pixel 8
How Display Color score is composed
The color attribute evaluates the capacity of the device to accurately reproduce colors. The measurements taken are for fidelity, white point color, and gamut coverage. We perform color evaluations for different lighting conditions to see how well the device can manage color in the surrounding environment. Colors are measured using a spectrophotometer in a controlled lighting environment. Perceptual analysis of color rendering is against the reference pattern displayed on a calibrated professional monitor.
White point under D65 illuminant at 1000 lux
Color rendering indoors (1000 lux)
Clockwise from top left: Honor Magic Vs, Vivo X Fold, Samsung Galaxy Z Fold4
(Photos for illustration only)
Color fidelity measurements
Honor Magic Vs color fidelity at 1000 lux in the sRGB color space
Honor Magic Vs color fidelity at 1000 lux in the Display-P3 color space
Each arrow represents the color difference between a target color pattern (base of the arrow) and its actual measurement (tip of the arrow). The longer the arrow, the more visible the color difference is. If the arrow stays within the circle, the color difference will be visible only to trained eyes.
Color behavior on angle
This graph shows the color shift when the screen is at an angle. Each dot represents a measurement at a particular angle. Dots inside the inner circle exhibit no color shift in angle; those between the inner and outer circle have shifts that only trained experts will see; but those falling outside the outer circle are noticeable.
Video
131
Samsung Galaxy Z Fold6
Samsung Galaxy Z Fold6
How Display Video score is composed
Our video attribute evaluates the Standard Dynamic Range (SDR) and High Dynamic Range (HDR10) video handling of each device in indoor and low-light conditions. We measure tone mapping, color gamut, brightness and contrast of the display. We perform perceptual analysis against our professional reference monitor (Sony BVM-HX310) to ensure that the rendering respects the artistic intent.
Video brightness at 10% APL in the dark ( < 5 lux)
Video rendering in a low-light (0 lux) environment
Clockwise from top left: Honor Magic Vs, Vivo X Fold, Samsung Galaxy Z Fold4
(Photos for illustration only)
Gamut coverage for video content
The primary colors are measured both in HDR10 and SDR. The extracted color gamut shows the extent of the color area that the device can render. To respect the artistic intent, the measured gamut should match the master color space of each video.
How Display Motion score is composed
The motion attribute evaluates the handling of dynamic contents. Frame drops, motion blur, and playback artifacts are scrutinized using games and videos.
Video frame drops
These long exposure photos present the number of frame irregularities in a 30-second video. A good performance shows a regular pattern (either a flat gray image or a pull-down pattern).
Touch
133
Google Pixel 7 Pro
Google Pixel 7 Pro
How Display Touch score is composed
To evaluate touch, DXOMARK uses a touch robot and a high-speed camera to play and record a set of scenarios for smoothness, accuracy and response-time evaluation.
Average Touch Response Time Honor Magic Vs
100 ms
Fast
Good
Bad
Slow
This response time test precisely evaluates the time elapsed between a single touch of the robot on the screen and the displayed action. This test is applied to activities that require high reactivity, such as gaming.
How Display Artifacts score is composed
Evaluating artifacts means checking for the performance, image rendering and motion flaws that can affect the end-user experience. DXOMARK measures precisely the device’s reflectance and the presence of flicker, and assesses the impact of residual aliasing when playing video games, among other characteristics.
Average Reflectance (SCI) Honor Magic Vs
SCI stands for Specular Component Included, which measures both the diffuse reflection and the specular reflection. Reflection from a simple glass sheet is around 4%, while it reaches about 6% for a plastic sheet. Although smartphones’ first surface is made of glass, their total reflection (without coating) is usually around 5% due to multiple reflections created by the complex optical stack.
Reflectance (SCI)
Measurements above show the reflection of the device within the visible spectrum range (400 nm to 700 nm). It includes both diffuse and specular reflection.
PWM Frequency Honor Magic Vs
1910 Hz
Bad
Good
Bad
Great
Displays flicker for 2 main reasons: refresh rate and Pulse Width Modulation. Pulse width modulation is a modulation technique that generates variable-width pulses to represent the amplitude of an analog input signal. This measurement is important for comfort because flickering at low frequencies can be perceived by some individuals, and in the most extreme cases, can induce seizures. Some experiments show that discomfort can appear at a higher frequency. A high PWM frequency (>1500 Hz) tends to be less disturbing for users.
Temporal Light Modulation
This graph represents the frequencies of lighting variation; the highest peak gives the main flicker frequency. The combination of a low frequency and a high peak is susceptible to inducing eye fatigue. Displays flicker for 2 main reasons: refresh rate and Pulse Width Modulation. This measurement is important for comfort because flickering at low frequencies can be perceived by some individuals, and in the most extreme cases, can induce seizures. Some experiments show that discomfort can appear at a higher frequency. A high PWM frequency (>1500 Hz) tends to be safer for users.
Aliasing (closeup)
Honor Magic Vs
(Photos for illustration only)
DXOMARK encourages its readers to share comments on the articles. To read or post comments, Disqus cookies are required. Change your Cookies Preferences and read more about our Comment Policy.