Smartphones  >  Google Pixel 8 Pro  >  Display Test Results
Google Pixel 8 Pro
Ultra-Premium ?

Google Pixel 8 Pro Display test

This device has been retested in the latest version of our protocol. This summary has been fully updated. For detailed information, check the What’s New article
OTHER AVAILABLE TESTS FOR THIS DEVICE

We put the Google Pixel 8 Pro through our rigorous DXOMARK Display test suite to measure its performance across four criteria. In this test results, we will break down how it fared in a variety of tests and several common use cases.

Overview

Key display specifications:

  • 6.7-inch OLED
  • Dimensions: 162.6 x 76.5 x 8.8 mm (6.40 x 3.01 x 0.35 inches)
  • Resolution: 1344 x 2992 pixels (~489 ppi density)
  • Aspect ratio: 20:9
  • Refresh rate: 120 Hz

Scoring

Sub-scores and attributes included in the calculations of the global score.

Google Pixel 8 Pro Google Pixel 8 Pro
154
display
157

164

164

165

144

163

154

164

Pros

  • Colors are well rendered in most tested conditions.
  • The device is readable in all tested conditions.
  • HDR10 video rendering is pleasant.
  • The device feels smooth and reactive when scrolling.

Cons

  • Darkest details can be slightly low in low-light conditions.
  • Unwanted touches on the borders by the palm may occur when holding the device with one hand.

The Google Pixel 8 Pro is a very versatile phone that provides users with a good display experience in all lighting conditions. Its strongest performances in the protocol were in two important sub-categories: readability and color. Compared with previous generations of Google phones, the Pixel 8 Pro showed better peak brightness and improved colors and contrast in challenging environments, such as outdoors on a bright sunny day.

The Google Pixel 8 Pro achieved a high score in readability, including outdoors and in direct sunlight (which is a differentiating element among smartphones today). Using automatic brightness in bright outdoor conditions, the peak brightness achieved can vary according to the displayed content — meaning that the brighter the content displayed, the lower the brightness of the screen. (This is the case for most devices achieving high peak brightness.) We measured the Pixel 8 Pro’s peak brightness at 2100 nits under sunlight when displaying a typical photo. While the iPhone 15 Pro Max (for example) can achieve comparable brightness to that of the Pixel 8 Pro on dark contents, the Apple device loses almost 50% of its brightness when displaying a web page, versus a loss of only 20% for the Google device.

The Google Pixel 8 Pro offered a class-leading performance in color. Tested in the natural color mode, it offered faithful skin tones in lighting conditions ranging from low light to outdoors, as well as a pleasant and vivid rendering of photos overall. The shift in angle was also well controlled.

The Pixel 8 Pro gave a solid experience in HDR10 playback, with pleasant brightness and contrast rendering as well as an adapted peak brightness in both low light and indoor lighting conditions. However, overall brightness was slightly low when watching HDR videos indoors, making dark tones less visible.

The Google Pixel 8 Pro showed no frame drops during testing.

The Google Pixel 8 Pro had very good touch-to-response time. Its 120 Hz provided very smooth web navigation, and the device has greater accuracy in the corners.

Test summary

About DXOMARK Display tests: For scoring and analysis, a device undergoes a series of objective and perceptual tests in controlled lab and real-life conditions. The DXOMARK Display score takes into account the overall user experience the screen provides, considering the hardware capacity and the software tuning. In testing, only factory-installed video and photo apps are used.  More in-depth details about how DXOMARK tests displays are available in the article “A closer look at DXOMARK Display testing.”

The following section focuses on the key elements of our exhaustive tests and analyses performed in DXOMARK laboratories. Full reports with detailed performance evaluations are available upon request. To order a copy, please contact us.

Readability

157

Google Pixel 8 Pro

164

Samsung Galaxy S24 Ultra
How Display Readability score is composed

Readability evaluates the user’s ease and comfort of viewing still content, such as photos or a web page, on the display under different lighting conditions. Our measurements run in the labs are completed by perceptual testing and analysis.

Luminance under various lighting conditions
This graph shows the screen luminance in environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Contrast under various lighting conditions
This graph shows the screen’s contrast levels in lighting environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Luminance vs Viewing Angle
This graph presents how the luminance drops as viewing angles increase.
Skin-tone rendering in an indoor (1000 lux) environment
From left to right: Google Pixel 8 Pro, Samsung Galaxy S23 Ultra, Honor Magic5 Pro, Apple iPhone 15 Pro Max
(Photos for illustration only)


Skin-tone rendering in a sunlight (>90 000 lux) environment
From left to right: Google Pixel 8 Pro, Samsung Galaxy S23 Ultra, Honor Magic5 Pro, Apple iPhone 15 Pro Max
(Photos for illustration only)


Readability of a web page in a sunlight (>90 000 lux) environment
From left to right: Google Pixel 8 Pro, Apple iPhone 15 Pro Max
(Photos for illustration only)

Luminance uniformity measurement
This graph shows the distribution of luminance throughout the entire display panel. Uniformity is measured with a 20% gray pattern, with bright green indicating ideal luminance. An evenly spread-out bright green color on the screen indicates that the display’s brightness is uniform. Other colors indicate a loss of uniformity.
PWM Frequency Google Pixel 8 Pro
240 Hz
Bad
Good
Bad
Great
Google Pixel 8 Pro
Honor Magic6 Pro
Samsung Galaxy S24 Ultra
Apple iPhone 15 Pro Max
Displays flicker for 2 main reasons: refresh rate and Pulse Width Modulation. Pulse width modulation is a modulation technique that generates variable-width pulses to represent the amplitude of an analog input signal. This measurement is important for comfort because flickering at low frequencies can be perceived by some individuals, and in the most extreme cases, can induce seizures. Some experiments show that discomfort can appear at a higher frequency. A high PWM frequency (>1500 Hz) tends to be less disturbing for users.
Temporal Light Modulation
This graph represents the frequencies of lighting variation; the highest peak gives the most important modulation. The combination of a low frequency and a high peak is susceptible to inducing eye fatigue.

Color

164

Google Pixel 8 Pro

165

Google Pixel 8
How Display Color score is composed

Color evaluations are performed in different lighting conditions to see how well the device manages color with the surrounding environment. Devices are tested with sRGB and Display-P3 image patterns. Both faithful mode and default mode are used for our evaluation. Our measurements run in the labs are completed by perceptual testing & analysis.

White point color under D65 illuminant at 830 lux
This graph shows the white point coordinates for the image pattern using the default or the faithful mode. D65 illuminant (6500 Kelvin) is a standard that defines the color of white at midday; it is used for display calibration as a white reference, therefore devices are expected to be at or close to the D65 white point.
Color fidelity
Each arrow represents the color difference between a target color pattern (base of the arrow) and its actual measurement (tip of the arrow). The longer the arrow, the more visible the color difference is. If the arrow stays within the circle, the color difference will be visible only to trained eyes. The tested color mode is the most faithful proposed by each device, and a color correction is applied to account for the different white points of each device.
White color shift with angle
This graph shows the color shift when the screen is at an angle. Each dot represents a measurement at a particular angle. Dots inside the inner circle exhibit no color shift in angle; those between the inner and outer circle have shifts that only trained experts will see; but those falling outside the outer circle are noticeable.
Circadian Action Factor Google Pixel 8 Pro
0.52
Good
Good
Bad
Bad
Google Pixel 8 Pro
Honor Magic6 Pro
Samsung Galaxy S24 Ultra
Apple iPhone 15 Pro Max
The circadian action factor is a metric that defines how light impacts the human sleep cycle. It is the ratio of the light energy contributing to sleep disturbances (centered around 450 nm, representing blue light) over the light energy contributing to our perception (covering 400 nm to 700 nm and centered on 550 nm, which is green light). A high circadian action factor means that the ambient light contains strong blue-light energy and is likely to affect the body’s sleep cycle, while a low circadian action factor implies the light has weak blue-light energy and is less likely to affect sleeping patterns.
Spectrum of white emission with Night mode ON
Spectrum measurements of a white web page with BLF mode on and off. This graph shows the impact of blue light filtering on the whole spectrum. All other settings used are default, in particular, the luminance level follows the auto-brightness adaptation from the manufacturer.
The wavelength (horizontal axis) defines light color but also the capacity to see it. For example, UV, which has a very low wavelength, and infra-red, which has a high wavelength, are both not visible to the human eye. White light is composed of all wavelengths between 400 nm and 700 nm, which is the range visible to the human eye.
Spectrum of white emission with Night mode OFF
Spectrum measurements of a white web page with BLF mode on and off. This graph shows the impact of blue light filtering on the whole spectrum. All other settings used are default, in particular, the luminance level follows the auto-brightness adaptation from the manufacturer.
The wavelength (horizontal axis) defines light color but also the capacity to see it. For example, UV, which has a very low wavelength, and infra-red, which has a high wavelength, are both not visible to the human eye. White light is composed of all wavelengths between 400 nm and 700 nm, which is the range visible to the human eye.

Video

144

Google Pixel 8 Pro

163

Samsung Galaxy S23 (Snapdragon)
How Display Video score is composed

The video attribute evaluates the Standard Dynamic Range (SDR) and High Dynamic Range (HDR10) video handling in indoor and low-light conditions . Our measurements run in the labs are completed by perceptual testing and analysis.

Video peak luminance vs Lighting conditions
This bar chart presents the peak luminance measured for SDR and HDR10 content on a 10% window white pattern.
Video peak luminance vs Lighting conditions
This bar chart presents the peak luminance measured for SDR and HDR10 content on a 10% window white pattern.
Video rendering in a low-light (0 lux) environment
Clockwise from top left: Google Pixel 8 Pro, Samsung Galaxy S23 Ultra, Honor Magic5 Pro, Apple iPhone 15 Pro Max
(Photos for illustration only)

Clockwise from top left: Google Pixel 8 Pro, Samsung Galaxy S23 Ultra, Honor Magic5 Pro, Apple iPhone 15 Pro Max
(Photos for illustration only)
SDR video EOTF curve
These curves represent the SDR video tone distribution for white color.
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for SDR videos follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under bright lighting conditions (830 lux) in the low gray levels region (< 30%).
SDR video EOTF curve
These curves represent the SDR video tone distribution for white color.
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for SDR videos follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under bright lighting conditions (830 lux) in the low gray levels region (< 30%).
HDR10 video EOTF curve
These curves represent the HDR10 video tone distribution for white color.
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). While the PQ (Perceptual Quantizer) standard is reminded here for reference, it cannot be a target for smartphones as it is an absolute standard whereas smartphones adapt their brightness to lighting conditions. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under bright lighting conditions (830 lux) in the low gray levels region (< 30%).
HDR10 video EOTF curve
These curves represent the HDR10 video tone distribution for white color.
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). While the PQ (Perceptual Quantizer) standard is reminded here for reference, it cannot be a target for smartphones as it is an absolute standard whereas smartphones adapt their brightness to lighting conditions. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under bright lighting conditions (830 lux) in the low gray levels region (< 30%).
Gamut coverage for video content under 0 lux environment
The primary colors are measured both in HDR10 and SDR. The solid color gamut measures the extent of the color area that the device can render in total darkness. The dotted line represents the content’s artistic intent. The measured gamut should match the master color space of each video.
Gamut coverage for video content under 830 lux environment
The primary colors are measured both in HDR10 and SDR. The solid color gamut measures the extent of the color area that the device can render in total darkness. The dotted line represents the content’s artistic intent. The measured gamut should match the master color space of each video.
SDR Video Frame Drops FHD at 30 fps
0 %
Few
Good
Bad
Many
Google Pixel 8 Pro
Honor Magic6 Pro
Samsung Galaxy S24 Ultra
Apple iPhone 15 Pro Max
SDR Video Frame Drops UHD at 30 fps
0 %
Few
Good
Bad
Many
Google Pixel 8 Pro
Honor Magic6 Pro
Samsung Galaxy S24 Ultra
Apple iPhone 15 Pro Max
These gauges present the percentage of frame irregularities in a 30-second video. These irregularities are not necessarily perceived by users (unless they are all located at the same time stamp) but are an indicator of performance.

Touch

154

Google Pixel 8 Pro

164

Google Pixel 7 Pro
How Display Touch score is composed

We evaluate the touch attributes under many types of contents where touch is key, and requires different behaviors such as gaming (quick touch to response time), web (smooth scrolling of the page) and images (accurate and smooth navigation from one image to another).

Average Touch Response Time Google Pixel 8 Pro
71 ms
Fast
Good
Bad
Slow
Google Pixel 8 Pro
Honor Magic6 Pro
Samsung Galaxy S24 Ultra
Apple iPhone 15 Pro Max
Touch To Display response time
This response time test precisely evaluates the time elapsed between a single touch of the robot on the screen and the displayed action. This test is applied to activities that require high reactivity, such as gaming.

DXOMARK encourages its readers to share comments on the articles. To read or post comments, Disqus cookies are required. Change your Cookies Preferences and read more about our Comment Policy.

Leave a Reply