Smartphones  >  Huawei Mate 60 Pro  >  Display Test Results
Huawei Mate 60 Pro
Ultra-Premium ?

Huawei Mate 60 Pro Display test

This device has been retested in the latest version of our protocol. This summary has been fully updated. For detailed information, check the What’s New article

We put the Huawei Mate 60 Pro through our rigorous DXOMARK Display test suite to measure its performance across four criteria. In this test results, we will break down how it fared in a variety of tests and several common use cases.

Overview

Key display specifications:

  • 6.82 inches OLED
  • Dimensions: 163.6 x 79.0 x 8.1 mm (6.44 x 3.11 x 0.32 inches)
  • Resolution: 1260 x 2720 pixels, (~440 ppi density)
  • Aspect ratio: 19.5:9
  • Refresh rate: 120 Hz

Scoring

Sub-scores and attributes included in the calculations of the global score.

Huawei Mate 60 Pro Huawei Mate 60 Pro
148
display
147

164

144

165

148

165

158

164

Pros

  • Color rendering is accurate in most ambient lighting environments
  • Touch is fluid, accurate, and responsive
  • Readability is comfortable in most ambient lighting environments

Cons

  • Lacks details under sunlight
  • Lack of brightness and details in the darkest areas when watching HDR10 videos

The Huawei Mate 60 Pro’s display provided a very satisfying user experience overall.

The screen’s readability generally maintained the same level as its predecessor, although low-light readability lacked some necessary brightness. We noted that the device’s brightness at midnight was less intense than the screen brightness activated in low light during the day, presumably to prevent dazzling users’ eyes with strong light in the dark. Readability outdoors was good, even though brightness could be a bit low. When the device was placed in an extremely bright environment, the device’s screen luminance measured a peak of 1645 cd/m² .

The Mate 60 Pro also has an option called “HDR Images” that is on by default, which enhances “the display quality of high dynamic range images.” This enhancement also is applied to non-HDR images, like our patterns. A comparison is shown below (shades lighting environment). When the HDR Images option is on, the content appears more readable, but the rendering loses details in the darkest shades, and the subject’s face appears flatter.

HDR on, left; HDR off, right.

Indoor lighting was a good environment for watching videos on the Mate 60 Pro thanks to appropriate brightness, but when luminance was at its peak, dark tones in the HDR10 content would slightly lack some details. In low light, screen brightness was comfortable enough to watch HDR10 content, even though dark tones lacked detail. Watching SDR video content was also a good experience under indoor lighting thanks to the correct brightness, but in low light viewing, the screen would dim slightly.

Screen colors in faithful mode were accurate and remain a strong point of the Mate 60 Pro’s display, even though a purple tint cast was noticed when viewing photos.

Finally,  touch interactions were smooth, and pleasing, with a very fast reaction time.

Test summary

About DXOMARK Display tests: For scoring and analysis, a device undergoes a series of objective and perceptual tests in controlled lab and real-life conditions. The DXOMARK Display score takes into account the overall user experience the screen provides, considering the hardware capacity and the software tuning. In testing, only factory-installed video and photo apps are used.  More in-depth details about how DXOMARK tests displays are available in the article “A closer look at DXOMARK Display testing.”

The following section focuses on the key elements of our exhaustive tests and analyses performed in DXOMARK laboratories. Full reports with detailed performance evaluations are available upon request. To order a copy, please contact us.

Readability

147

Huawei Mate 60 Pro

164

Samsung Galaxy S24 Ultra
How Display Readability score is composed

Readability evaluates the user’s ease and comfort of viewing still content, such as photos or a web page, on the display under different lighting conditions. Our measurements run in the labs are completed by perceptual testing and analysis.

Luminance under various lighting conditions
This graph shows the screen luminance in environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Contrast under various lighting conditions
This graph shows the screen’s contrast levels in lighting environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Luminance vs Viewing Angle
This graph presents how the luminance drops as viewing angles increase.
Skin-tone rendering in an indoor (1000 lux) environment
From left to right: Huawei Mate 60 Pro, Huawei Mate 50 Pro, Oppo Find X6 Pro, Apple iPhone 15 Pro Max.
(Photos for illustration only)


Readability in an outdoor (20 000 lux) environment
From left to right: Huawei Mate 60 Pro, Huawei Mate 50 Pro, Oppo Find X6 Pro, Apple iPhone 15 Pro Max.
(Photos for illustration only)


Readability in a sunlight (>90 000 lux) environment
From left to right: Huawei Mate 60 Pro, Huawei Mate 50 Pro, Oppo Find X6 Pro, Apple iPhone 15 Pro Max.
(Photos for illustration only)

 

Average Reflectance (SCI) Huawei Mate 60 Pro
5.1 %
Low
Good
Bad
High
Huawei Mate 60 Pro
Honor Magic V2
Apple iPhone 15 Pro Max
Google Pixel 8 Pro
SCI stands for Specular Component Included, which measures both the diffuse reflection and the specular reflection. Reflection from a simple glass sheet is around 4%, while it reaches about 6% for a plastic sheet. Although smartphones’ first surface is made of glass, their total reflection (without coating) is usually around 5% due to multiple reflections created by the complex optical stack.
Average reflectance is computed based on the spectral reflectance in the visible spectrum range (see graph below) and human spectral sensitivity.
Reflectance (SCI)
Wavelength (horizontal axis) defines light color, but also our capacity to see it; for example, UV is a very low wavelength that the human eye cannot see; Infrared is a high wavelength that the human eye also cannot see). White light is composed of all wavelengths between 400 nm and 700 nm, i.e. the range the human eye can see. Measurements above show the reflection of the devices within the visible spectrum range (400 nm to 700 nm).

Uniformity
This graph shows the distribution of luminance throughout the entire display panel. Uniformity is measured with a 20% gray pattern, with bright green indicating ideal luminance. An evenly spread-out bright green color on the screen indicates that the display’s brightness is uniform. Other colors indicate a loss of uniformity.
PWM Frequency Huawei Mate 60 Pro
1440 Hz
Bad
Good
Bad
Great
Huawei Mate 60 Pro
Honor Magic V2
Apple iPhone 15 Pro Max
Google Pixel 8 Pro
Displays flicker for 2 main reasons: refresh rate and Pulse Width Modulation. Pulse width modulation is a modulation technique that generates variable-width pulses to represent the amplitude of an analog input signal. This measurement is important for comfort because flickering at low frequencies can be perceived by some individuals, and in the most extreme cases, can induce seizures. Some experiments show that discomfort can appear at a higher frequency. A high PWM frequency (>1500 Hz) tends to be less disturbing for users.
Temporal Light Modulation
This graph represents the frequencies of lighting variation; the highest peak gives the most important modulation. The combination of a low frequency and a high peak is susceptible to inducing eye fatigue.

Color

144

Huawei Mate 60 Pro

165

Google Pixel 8
How Display Color score is composed

Color evaluations are performed in different lighting conditions to see how well the device manages color with the surrounding environment. Devices are tested with sRGB and Display-P3 image patterns. Both faithful mode and default mode are used for our evaluation. Our measurements run in the labs are completed by perceptual testing & analysis.

White point color under D65 illuminant at 830 lux