Smartphones  >  Samsung Galaxy A55 5G  >  Display Test Results
Samsung Galaxy A55 5G
High-End ?

Samsung Galaxy A55 5G Display test

This device has been retested in the latest version of our protocol. This summary has been fully updated. For detailed information, check the What’s New article
OTHER AVAILABLE TESTS FOR THIS DEVICE

We put the Samsung Galaxy A55 5G through our rigorous DXOMARK Display test suite to measure its performance across four criteria. In this test results, we will break down how it fared in a variety of tests and several common use cases.

Overview

Key display specifications:

  • 6.6 inches AMOLED
  • Dimensions: 161.1 x 77.4 x 8.2 mm (6.23 x 3.02 x 0.32 inches)
  • Resolution: 1080 x 2340 pixels, (~396 ppi density)
  • Aspect ratio: 19.5:9
  • Refresh rate: 120 Hz

Scoring

Sub-scores and attributes included in the calculations of the global score.

Samsung Galaxy A55 5G Samsung Galaxy A55 5G
147
display
145

164

144

165

157

163

138

164

Pros

  • Natural rendering and good readability under sunlight for web browsing and photo viewing
  • Good color rendering in most lighting environments for photo viewing
  • Pleasant video experience, with brightness that is well-suited for HDR10 videos

Cons

  • Poor management of unwanted screen touches
  • Excessive automatic brightness in dark environments, even with the blue light filter on
  • Occasional pink to green fringes on screen when viewing at an  angle

The Samsung Galaxy A55 5G display provided an impressive performance for its High-end segment, with a strong performance in video.

When watching videos, particularly indoors, the A55 5G’s overall screen brightness provided good rendering and a good level of details in dark areas. However, there was an occasional slight orange cast visible when viewing videos and screen luminance in an indoor environment could have been slightly higher for HDR10 content.

The device’s screen measured a peak brightness under sunlight conditions of 1638 nits in High Brightness Mode, considerably higher than advertised, and well above its predecessor A54 5G’s 1344 nits. The peak brightness approached the peak level of Samsung’s premium Galaxy S23 model, which was measured at 1600 nits.  In terms of reflectance and flicker,  our testers saw little improvement from the predecessor’s already-weak showing.

Color rendering was uniform and good, and our testers saw improvements in how the A55 5G display managed sunlight conditions, particularly in gamma and color. Faces were better rendered, and colors appeared more natural.

The Galaxy A55 5G, like its predecessor as well as other mid-range devices, tended to show pink and green fringes on the display when viewed at an angle.

Test summary

About DXOMARK Display tests: For scoring and analysis, a device undergoes a series of objective and perceptual tests in controlled lab and real-life conditions. The DXOMARK Display score takes into account the overall user experience the screen provides, considering the hardware capacity and the software tuning. In testing, only factory-installed video and photo apps are used.  More in-depth details about how DXOMARK tests displays are available in the article “A closer look at DXOMARK Display testing.”

The following section focuses on the key elements of our exhaustive tests and analyses performed in DXOMARK laboratories. Full reports with detailed performance evaluations are available upon request. To order a copy, please contact us.

Readability

145

Samsung Galaxy A55 5G

164

Samsung Galaxy S24 Ultra
How Display Readability score is composed

Readability evaluates the user’s ease and comfort of viewing still content, such as photos or a web page, on the display under different lighting conditions. Our measurements run in the labs are completed by perceptual testing and analysis.

Luminance under various lighting conditions
This graph shows the screen luminance in environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Contrast under various lighting conditions
This graph shows the screen’s contrast levels in lighting environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Luminance vs Viewing Angle
This graph presents how the luminance drops as viewing angles increase.

Readability in an outdoor (20 000 lux) environment
From left to right: Samsung Galaxy A55 5G, Samsung Galaxy A54 5G, Google Pixel 7a, Honor 90
(Photos for illustration only)


Readability in a sunlight (>90 000 lux) environment
From left to right: Samsung Galaxy A55 5G, Samsung Galaxy A54 5G, Google Pixel 7a, Honor 90
(Photos for illustration only)
Average Reflectance (SCI) Samsung Galaxy A55 5G
5.2 %
Low
Good
Bad
High
Samsung Galaxy A55 5G
Samsung Galaxy A54 5G
Google Pixel 7a
Honor 90
SCI stands for Specular Component Included, which measures both the diffuse reflection and the specular reflection. Reflection from a simple glass sheet is around 4%, while it reaches about 6% for a plastic sheet. Although smartphones’ first surface is made of glass, their total reflection (without coating) is usually around 5% due to multiple reflections created by the complex optical stack.
Average reflectance is computed based on the spectral reflectance in the visible spectrum range (see graph below) and human spectral sensitivity.
Reflectance (SCI)
Wavelength (horizontal axis) defines light color, but also our capacity to see it; for example, UV is a very low wavelength that the human eye cannot see; Infrared is a high wavelength that the human eye also cannot see). White light is composed of all wavelengths between 400 nm and 700 nm, i.e. the range the human eye can see. Measurements above show the reflection of the devices within the visible spectrum range (400 nm to 700 nm).

Uniformity
This graph shows the distribution of luminance throughout the entire display panel. Uniformity is measured with a 20% gray pattern, with bright green indicating ideal luminance. An evenly spread-out bright green color on the screen indicates that the display’s brightness is uniform. Other colors indicate a loss of uniformity.
PWM Frequency Samsung Galaxy A55 5G
240 Hz
Bad
Good
Bad
Great
Samsung Galaxy A55 5G
Samsung Galaxy A54 5G
Google Pixel 7a
Honor 90
Displays flicker for 2 main reasons: refresh rate and Pulse Width Modulation. Pulse width modulation is a modulation technique that generates variable-width pulses to represent the amplitude of an analog input signal. This measurement is important for comfort because flickering at low frequencies can be perceived by some individuals, and in the most extreme cases, can induce seizures. Some experiments show that discomfort can appear at a higher frequency. A high PWM frequency (>1500 Hz) tends to be less disturbing for users.
Temporal Light Modulation
This graph represents the frequencies of lighting variation; the highest peak gives the most important modulation. The combination of a low frequency and a high peak is susceptible to inducing eye fatigue.

Color

144

Samsung Galaxy A55 5G

165

Google Pixel 8
How Display Color score is composed

Color evaluations are performed in different lighting conditions to see how well the device manages color with the surrounding environment. Devices are tested with sRGB and Display-P3 image patterns. Both faithful mode and default mode are used for our evaluation. Our measurements run in the labs are completed by perceptual testing & analysis.

White point color under D65 illuminant at 830 lux