Smartphones  >  Samsung Galaxy S24 Ultra  >  Display Test Results
Samsung Galaxy S24 Ultra
Ultra-Premium ?

Samsung Galaxy S24 Ultra Display test

This device has been retested in the latest version of our protocol. This summary has been fully updated. For detailed information, check the What’s New article
OTHER AVAILABLE TESTS FOR THIS DEVICE

We put the Samsung Galaxy S24 Ultra through our rigorous DXOMARK Display test suite to measure its performance across four criteria. In this test results, we will break down how it fared in a variety of tests and several common use cases.

Overview

Key display specifications:

  • 6.8 inches Dynamic AMOLED 2X
  • Dimensions: 162.3 x 79.0 x 8.6 mm (6.39 x 3.11 x 0.34 inches)
  • Resolution: 1440 x 3120 pixels, (~505 ppi density)
  • Aspect ratio: 19.5:9
  • Refresh rate: 120 Hz

Scoring

Sub-scores and attributes included in the calculations of the global score.

Samsung Galaxy S24 Ultra Samsung Galaxy S24 Ultra
155
display
164

Best

140

165

160

165

146

164

Pros

  • Good readability under sunlight thanks to a very high peak brightness
  • Improved management of screen reflections, thanks to advanced glass technology
  • Accurate color rendering  in most lighting environments
  • Excellent management of frame mismatches when watching all types of videos

Cons

  • Excessively high brightness levels in video in low-light environment
  • Lack of brightness and details in indoor lighting environment when looking at photos
  • Poor management of involuntary touches

The Samsung Galaxy S24 Ultra display’s marked improvements over its predecessor the S23 Ultra, particularly in readability and touch, put the latest flagship nearly at the top of our Display protocol ranking.

The Galaxy S24 Ultra led all devices in readability, where it achieved a top score thanks to its impressive luminance outdoors and low reflectance in challenging environments. In our tests under bright sunlight, the device achieved a measured peak brightness of 2572 nits (close to the 2600 advertised), which is significantly above the Galaxy S23 Ultra’s 1750 nits. Moreover, the addition of an anti-reflective glass serves to deepen contrast to make the images more vivid in challenging conditions. These combined performances mean that in direct sunlight, it’s not necessary to find a shaded area or to cover the screen with one’s hand to be able to see and read what is on the display. While performance was great outdoors, the screen’s brightness could be a little imprecise in other conditions: our testing results showed that screen brightness sometimes could be too high at night and too low in indoor environments.

The Samsung Galaxy S24 Ultra’s color fidelity was well-tuned in the device’s natural mode setting compared to default mode, but our testers noted some color shifts in angle that were more pronounced than those of some of its competitors.

The S24 Ultra should have provided a very similar video experience as its predecessor, but that was not the case. The S24 Ultra was unable to achieve the level of the S23 Ultra or the S23’s top-scoring performance in video mainly because the screen was too bright to view the content comfortably under a low-light environment. However, when watching videos in an indoor environment, the device provided a satisfying performance.

The flagship did an excellent job of managing frame mismatches when playing videos. Additionally, the display would adapt its refresh rate to that of the video frame rate, thus avoiding judder.

The device’s redesigned edged display probably contributed to improvements over the S23 Ultra in terms of touch interactions and accuracy, although there were occasions of unintentional touches. Scrolling the web and viewing the gallery were overall smooth experiences. Touch reactivity also quickened slightly over the S23 Ultra, which was already quite good.

Test summary

About DXOMARK Display tests: For scoring and analysis, a device undergoes a series of objective and perceptual tests in controlled lab and real-life conditions. The DXOMARK Display score takes into account the overall user experience the screen provides, considering the hardware capacity and the software tuning. In testing, only factory-installed video and photo apps are used.  More in-depth details about how DXOMARK tests displays are available in the article “A closer look at DXOMARK Display testing.”

The following section focuses on the key elements of our exhaustive tests and analyses performed in DXOMARK laboratories. Full reports with detailed performance evaluations are available upon request. To order a copy, please contact us.

Readability

164

Samsung Galaxy S24 Ultra

Best

How Display Readability score is composed

Readability evaluates the user’s ease and comfort of viewing still content, such as photos or a web page, on the display under different lighting conditions. Our measurements run in the labs are completed by perceptual testing and analysis.

Luminance under various lighting conditions
This graph shows the screen luminance in environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Contrast under various lighting conditions
This graph shows the screen’s contrast levels in lighting environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Luminance vs Viewing Angle
This graph presents how the luminance drops as viewing angles increase.
Skin-tone rendering in an indoor (1000 lux) environment
From left to right: Samsung Galaxy S24 Ultra, Samsung Galaxy S23 Ultra, Apple iPhone 15 Pro Max, Google Pixel 8 Pro
(Photos for illustration only)


Skin-tone rendering in an outdoor (20 000 lux) environment
From left to right: Samsung Galaxy S24 Ultra, Samsung Galaxy S23 Ultra, Apple iPhone 15 Pro Max, Google Pixel 8 Pro
(Photos for illustration only)


Skin-tone rendering in a sunlight (>90 000 lux) environment
From left to right: Samsung Galaxy S24 Ultra, Samsung Galaxy S23 Ultra, Apple iPhone 15 Pro Max, Google Pixel 8 Pro
(Photos for illustration only)
Average Reflectance (SCI) Samsung Galaxy S24 Ultra
1.5 %
Low
Good
Bad
High
Samsung Galaxy S24 Ultra
Samsung Galaxy S23 Ultra
Apple iPhone 15 Pro Max
Google Pixel 8 Pro
SCI stands for Specular Component Included, which measures both the diffuse reflection and the specular reflection. Reflection from a simple glass sheet is around 4%, while it reaches about 6% for a plastic sheet. Although smartphones’ first surface is made of glass, their total reflection (without coating) is usually around 5% due to multiple reflections created by the complex optical stack.
Average reflectance is computed based on the spectral reflectance in the visible spectrum range (see graph below) and human spectral sensitivity.
Reflectance (SCI)
Wavelength (horizontal axis) defines light color, but also our capacity to see it; for example, UV is a very low wavelength that the human eye cannot see; Infrared is a high wavelength that the human eye also cannot see). White light is composed of all wavelengths between 400 nm and 700 nm, i.e. the range the human eye can see. Measurements above show the reflection of the devices within the visible spectrum range (400 nm to 700 nm).

Uniformity
This graph shows the distribution of luminance throughout the entire display panel. Uniformity is measured with a 20% gray pattern, with bright green indicating ideal luminance. An evenly spread-out bright green color on the screen indicates that the display’s brightness is uniform. Other colors indicate a loss of uniformity.
PWM Frequency Samsung Galaxy S24 Ultra
480 Hz
Bad
Good
Bad
Great
Samsung Galaxy S24 Ultra
Samsung Galaxy S23 Ultra
Apple iPhone 15 Pro Max
Google Pixel 8 Pro
Displays flicker for 2 main reasons: refresh rate and Pulse Width Modulation. Pulse width modulation is a modulation technique that generates variable-width pulses to represent the amplitude of an analog input signal. This measurement is important for comfort because flickering at low frequencies can be perceived by some individuals, and in the most extreme cases, can induce seizures. Some experiments show that discomfort can appear at a higher frequency. A high PWM frequency (>1500 Hz) tends to be less disturbing for users.
Temporal Light Modulation
This graph represents the frequencies of lighting variation; the highest peak gives the most important modulation. The combination of a low frequency and a high peak is susceptible to inducing eye fatigue.

Color

140

Samsung Galaxy S24 Ultra

165

Google Pixel 8
How Display Color score is composed

Color evaluations are performed in different lighting conditions to see how well the device manages color with the surrounding environment. Devices are tested with sRGB and Display-P3 image patterns. Both faithful mode and default mode are used for our evaluation. Our measurements run in the labs are completed by perceptual testing & analysis.

White point color under D65 illuminant at 830 lux